Statistics: is a systematic method for drawing conclusions from data with variability the scientific study of how to: collect data (design) summarize data (description) draw conclusions and make predictions from incomplete data (estimation, inference, prediction)			
A: My model for scientific investigations: Question \longrightarrow Data \longrightarrow Conclusion Design Analysis	n		
 Five components: design, description, estimation, inference, prediction Design: How to collect data (not a focus in this class) Description: describing patterns in the sample Estimation: estimating population quantities from sample statistics Inference (p 8): "conclusion that patterns in the data are present in some broader context" Statistical Inference: "above justified by a probability model linking the data to a broader context" Prediction: predicting characteristics, e.g., values, of new observations 			
B: Usual terminology (p 19): Population / parameter; Sample / statistic			
Probability model connects sample to the population Depends on how data are collected			
Data are presumed to come from some random mechanism.Design-based: estimation and inference justified only by study design,i.e. only on how data collected.Model-based: presume a model for the random mechanism.			

Design-based: two possible random mechanisms: Choice of units: random, haphazard, or arbitrary Assignment of treatments to units: randomly or not

Four types of studies: (book display 1.5)

	Treatment assignment		
Choice of units	Random	Not	
Random	experiment (rare)	survey	
Not	experiment	observation	

C: Random assignment of treatments really matters: retraction/re-publication of Med. diet study

Surveys seem simple: just ask questions. Actually very difficult to do well

Literary Digest 1936 "survey"

D: What are we interested in?: location, spread, shape

Notation: Σ : sum, X_i : i'th observation

Graphical portrayals of the data: dot plots, histograms, box plots

Numerical measures:

E: Location: mean: $\overline{X} = \Sigma X_i/n$, median: 1/2 above, 1/2 below

How choose?

traditional: do what your group has always done

better: does it matter? symmetric distributions: no. use mean: more precise if does: what's the question? total \Rightarrow mean, typical individual \Rightarrow median.

F: Spread: sample variance: $s^2 = \Sigma (X_i - \overline{X})^2 / (n-1)$ standard deviation: $s = \sqrt{\text{Variance}}$ coefficient of variation, cv: s/\overline{X} , measures relative variation.

G: Inference: two types: Confidence interval, hypothesis test

Can be based on how the data were collected (design-based inference)

Or on a probability model for the data (model-based inference)

Spoiler: multiple opinions and lots of controversy.

Lots of tricky epistemological and practical issues. I give the traditional approach

H: Hypothesis test:

Assume something (null hypothesis) and ask whether observations are unusual p-value: probability of observing data or something more extreme given null hypothesis Does not prove null hypothesis or show that alternative more probable than null.

Scale of evidence: Display 2.12

p > 0.10: no evidence against null, (not: "null is true", e.g., not: "X has no effect") 0.05 : weak evidence for the alternative<math>0.01 : (moderate) evidence for the alternative<math>0.001 : strong evidence for the alternative<math>p < 0.001: (convincing) very strong evidence for the alternative

"All we know about the world teaches us that the effects of A and B are always different - in some decimal place - for any A and B. Thus asking "are the effects different?" is foolish" (John Tukey)

I: Randomization test: design-based inference

randomly reassign labels, compute S = statistic of interest (e.g., difference in means) p = P[observed S as or more extreme than random S], e.g.,Compare means of two populations, choose $S = |\overline{Y}_A - \overline{Y}_B|$ $p = P[\text{observed } |\overline{Y}_A - \overline{Y}_B| \ge \text{ random } |\overline{Y}_A - \overline{Y}_B]$